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Abstract. A reformulation of the Gutmiller-type approximation for so-called correlated 
ferrimagnetic states is developed to obtain an analytical expression for the ground-state 
energies. The physical properties of two-dimensional antiferromagnetic states in the doped 
regime, such as the longitudinal spin susceptibility and the charge wmpressibility, are 
calculated from this formalism. We have estimated the Landau parameters in Fermi liquid 
theory near the critical doping concentration for antiferromagnetism and we show the 
fundamental difference of these correlated antiferromagnetic systems with liquid 'He. In 
particular, we suggest the possibility of singlet superconductivity in the intermediate regime 
for the repulsive electron interaction (U - W) due to antiferromagnetic correlation. 

1. Introduction 

The most remarkable differences in the observed properties of the high-T, copper oxide 
superconductors from the conventional superconductors are in magnetic properties. It is 
now widely believed that they arise from strongtwo-dimensional (ZD) antiferromagnetic 
(AF) correlation between the spins of copper d holes in the insulating phase of these 
materials. Recently, the existence of strong spin correlations in the superconducting 
phase has also been reported from neutron scattering experiments performed in 
La,_,Sr,CuO, [l] and YBa,Cu,O,_, [2]. Naturally, this fact raises the question of a 
possible link between the superconducting state, through doping with the magnetic 
insulator parent. From a theoretical point of view, there have been two limiting ways to 
approach the ZD antiferromagnetic insulating state based on the single-band Hubbard 
model. The first, advanced by Schrieffer er a1 [3, 41, is the weak-coupling or 'itinerant 
electron' treatments in which the on-site repulsion U is assumed to be smaller than the 
bandwidth W(=Sf). In this approach, the half-filled reference state is characterized by 
the spin-density-wave (SDW) state, wbichoccurs due to the perfect Fermi-surface nesting. 
It causes an energy gap 2AsDw at the Fermi surface for the undoped material, leading to 
an insulator. An essential point is the existence of the antiferromagnetic order, which 
presumably extends to the superconducting phase although it becomes short-range 
ordering. The latter leads to anelectronic pseudo-gap, which isslowly varying temporally 
as well as spatially. In the neighbourhood of the introduced mobile holes, the pseudo- 
gap is locally suppressed and that produces an effective potential or a bag inside which 
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the hole is trapped self-consistently. As a result one finds that an entity comprising the 
quasi-hole surrounded by a local distortion of SDW background moves with charge +e 
and spin 1/2, which is referred to as a 'spin bag'. It has been considered that two spin 
bags attract each other to form a Cooper pair with the result that the two holes tend to 
share one common bag to lower their total energy. Quantitatively, the proper random- 
phase approximation (RPA) approaches [3, 5, 61 for fluctuations of a Landau-Fermi 
liquid have shown that these induce an attraction between the quasi-holes through 
exchanging the longitudinal magnetization fluctuations of the antiferromagnetic back- 
ground. Since materials such as La2Cu0, have been found to be in the borderline 
situation U =  W [7], it seems very important to understand the validity of RPA cal- 
culations in the large-U limit [%lo]. From this point of view it is interesting to note the 
result of Weng eta1 [8], who study the motion of a spin bag in the SDW background by 
using a variational method. Although the pwave- and d-wave-like attractive potential 
is still obtained, its behaviour as a function of U is quite different from the simple RPA 
approach. For example, while thed-wave component of the attractive potential obtained 
in RPA reaches a maximum around U - 3t and decreases as l/U' with increase of U, the 
result of [8] shows that the total attractive interaction is much reduced in the weak- 
coupling regime (U < W )  and its maximum is pushed into the large-[/ regime (around 
U - 101). The alternative way is from the strong-coupling, localized limit (U 1 W )  where 
one gets a Mott insulator in the half-filled case with one electron per Cu site, described 
by the antiferromagnetic Heisenberg Hamiltonian [Ill. In this limit, where the basis of 
most theoretical work is the f-Jmodel ( J  = t2 /U) ,  a theory of superconductingdepends 
on the manner in which the quasi-particles can be described in the different ground 
states upon doping [ll-131. While the ultimate goal remains the understanding of the 
antiferromagnetism at relatively high doping level (-15%), it has so far proven elusive. 
In the limit of a very low doping concentration (6 0), where the Fermi liquid theory 
isexpected to break down, there has beensome progress including the studiesof asingle 
hole in an antiferromagnetic background [14]. For doping in the proximity of the critical 
concentration where~~statesdisappear, theFermi liquidpicture isnot clear. Recently, 
a phenomenological model, in which the leading role is played by antiferromagnetic 
correlation, has been proposed to give a quantitative description of NMR measurements 
of high-T'copper oxide superconductor 1151. 

The purpose of this paper is to study the behaviour of a doped antiferromagnetic 
state in a region close to the Mott transition (U = W ) .  For this, the antiferromagnetic 
Gutzwiller-type analytical approximation based on the slave-boson functional-integral 
approach is employed to calculate static properties of the system. Our calculation is a 
natural generalization of the formalism developed by Vollhardt [16] for liquid 3He 
considered as a nearly localized Fermi liquid in which the Brinkmann-Rice metal- 
insulator transition (when U = U, = 8W) can be understood. One of us was the first to 
remark on the fundamental difference with 'He in heavy-fermion systems if anti- 
ferromagnetic correlations occur [17]. He found that the estimated value of F ;  which 
characterizes the renormalization of the static spin susceptibility is likely to be small in 
comparison with those of 'He. The consequence is that singlet superconductivity is 
possible in heavy-fermion compounds. Here we want to show that this idea is realized in 
the two-dimensional Hubbard model where strong magneticcorrelationsare important. 
The organization of this paper is the following. Insection 2 we reformulate the Gutzwiller 
variational approach in order to obtain explicitly an expression for the ground-state 
energy in the antiferromagnetic state in analogy with Vollhardt's one for liquid 'He. 
This may be called the correlated ferrimagneticstate. Then we first estimate analytically 
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the Landau parameter 0 by using a constant density of states (DOS) for the uncorrelated 
system. This result, valid for the interesting case U - W, allows us to compare with an 
expression of 0 in the case when the magnetic correlation is neglected [18,19]. An 
analytical minimization of the ground-state energy with respect to the probability of 
doubly occupied sites d by expanding in a Taylor series in d - dHF, where dHF is the same 
probability in the Hartree-Fock approximation (WA), is derived in section 3. This 
approximation not only gives good agreement with the numerical calculation for all the 
doping region but also describes qualitative behaviour in the weak and strong limit of 
U .  In the proximity of the critical concentration, the longitudinal spin susceptibility and 
the charge compressibility are calculated in section 4. In particular, we show that the 
correlation effect can decrease the stability domain of ferrimagnetism for intermediate 
values of Uin comparison with the HFA. For this regime of concentration where the long- 
range antiferromagnetic order is not present, the Landau parameters are estimated, in 
section 5, with a correction due to the contribution of the transverse spin susceptibility. 
These parameters determine the average ‘molecular field’ that arises from spin fluc- 
tuationeffects. Assuming the forwardscattering sum rule for 1 < 2, we discuss the singlet 
superconductor in this system. Finally, section 6 discusses the results and possible 
improvements in relation with other works. 

2. Formulation 

Let us start by considering the two-dimensional Hubbard model on a square lattice: 

H =  -f E (c&cjo + HC) + UE c:~ C;+ c:~ c;, (1) 
0.1) 

where C$(Cj0) is a creation (annihilation) operator of an electron with spin U at site i; 
-tis the nearest-neighbour hopping integral; and U is the on-site electron interaction. 
By using the Gutzwiller-type analytical approximation based on the slave-boson func- 
tional-integral approach [ZO], the ground-state energy is given by [21] :  

In equation (Z), d, is the density of doubly occupied sites; 5; and y; denote the exchange 
and charge fields, respectively;f(&) is the Fermi distribution function; and &,(E) is the 
local density of states of U spin and site i. In order to treat the antiferromagnetic 
states, one divides the crystal into two sublattices, A and B. Then in the alloy analogy 
approximation [22] &(E)  can be determined from the local Green function. They have 
the following forms: 

pAd&) [XBo(E)/XAo(&)I Po{[xAdE)xBd&)I”2} ( 3 4  
Pede) = [XAo(E)/XBo(E)I 1’2 pa{[XAd&)X,,(E)1”2} (36) 

with P O ( & )  being the unperturbed DOS of electrons of either spin. The locators X;, are 
given by: 

The band-narrowing factor qio in general, is a function of n;, mi and d;: 

qi&;,mi,d;)= 

X;o(&) = ( E  - Yi + oE;)/qio. (4) 

(5 )  
2{[(ni +mi -2di)(1 -ni +d,)]’!* + [ d i ( n i - m i  -2di)]’~*I2 

(n; +om ;) (2 - ni  -am; )  

The expressions given by equations (2) and (5) include the original Gutzwiller 
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approximation ( G A )  and antiferromagnetic Hartree-Fock approximation ( A F W A )  as a 
special case. The former is realized when ti = mi = 0 and the latter when qio = 1 and 
dpF = (n; - mf) /4 .  In order to obtain a more transparent form for the energy expec- 
tation value as a function of the physical quantities q,o and d, following Vollhardt in the 
case of liquid 3He, it is necessary for us to derive the expression of the kinetic energy in 
HFA. From equation ( 2 )  it is not difficult to identify this expression (for T =  0 K): 

D Nguyen Manh et a1 

EPF = x ( ( @ F m i - x ~ F n , ) + l d ~ ~ ~ p ~ ( ~ ) )  0 (6) 

with 

cF = ( u / 2 ) m j  y?' = (U/2)n;. (7) 

XEF(F) = E - A;,, (8) 

Aj0 = Un, -g .  (9)  

The related expressions for locator XEF may be written as 

with 

When an infinitesimal longitudinal magnetic field is applied to our system, the sublattice 
magneticmoment m, can be defined as 

where mo is the staggered magnetization in AF states and m is the magnetic moment 
created by the external field. If the total electron number at a site is supposed to be 
independent of the ficld, as has been done by Penn [U], ni = n ,  we have the following 
expressions for q0: 

m A = m o + m  m B =  -mo + m (10) 

nAo = [n + o(mo + m)]/2 = [I - 6 + o(mo + m)] /2  U l a )  

n B , = [ n + a ( - m o + m ) ] / 2 = [ 1 - 6 + o ( - m o + m ) ] / 2  (1lb) 
where we denote 6 as the doping concentration. Instead of (9) we use the new 
'ferrimagnetic order parameters': 

Ao,, = (AAo + ABo)/2 = U(n i: m)/2  
and 

AQo = (AAo - AB0)/2 = Ic_Umo/2. 
The upper (lower) sign in expression (12) corresponds to U = 1 (-1). From the definition 
of the Fermi level sFo: 

no = 4 leF' b A o ( & )  + p B d E ) 1  ds 

(12a) 

(12b) 

(13) 

we can obtain exactly the general relation for ferrimagnetic states in HFA [U]: 

and 
Aoo = (14) 

The plus sign of (15) is chosen when F > 0. With the definitions (14) and (15) we 
obtain the following expression for the kinetic energy per site: 
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with 

and 
B ~ .  &’pO(&) de f [?(E*  + A&)’/’]’ &E = 

Byusing(17b)wecanrewrite theenergyexpectationvalue(equation(2))inthepresence 
of correlation in the form: 

with &FJ(AQ,) has the same form as (17)  but AQo must be considered as a variational 
parameter determined from minimization of (18). The renormalization factor 9. is given 
by 

90 = (4A\04!30)’ * (19) 
Expression (18) can be considcred as the ground-state energy of the so-called cor- 

related ‘ferrimagnetic’slate. In the particular case when m = 0 we have nAo = nB -~ and 
therefore qo = 9 = ( 9 , , ~ ~ . ~ ) ” ’ .  The expression (18) is [hen identical to a well known 
result for the ground-state energy of the antiferromagnetic state in the Gumil le r  
approximation (AFGA) 124,251. Obviously. for mn = 0, one finds from (18) the ground- 
state energy of the original GA, which has been analysed by Vollhardt for liquid ’He 

Beforederivingananalytical minimizationofc,with respect tod. we want toindicate 
that there is a possibility to calculate the spin susceptibility form (18) in a particularly 
interesting case U - W if we use the constant DOS to evaluate cp. At this point it  is 
necessary to emphasize that although expression (18) has a similar form in comparison 
nith those of original GA, there is an important difference. If the ground state of the 
paramagnetic state is spin rotationally invariant, this propen) no longer holds in the 
AF state. In particular, owing to the spin broken symmetry we have x: # 
x:, where x: and ,y: are longitudinal and transverse susceptibility, respectively. 
However, Re will show in section 5 that in the doped anrifemomagnericregime the ratio 
rLT = x:, xb is approximately equal to 1. So we th ink  that one can use the value x) 
instead of an average value j t o  evaluate, for example, the Landau parameter E in the 
proximity of the critical doping concentration for antiferromagnetism. 

Using a constant DOS of width A = M’/2, the expression (176) for &::(AQ) is greatl) 
simplified: 

with 

[161. 

&E = [ 1 / ( 4 4 ) ] [ ~ ~ , , ( A & ,  T E;,,)’,’ - A ( A &  T A’)’ 2 ]  - A Q , A Q . , / ( ~ U )  (20) 

(21) E F ~  e A( -6 + om). 

&kF = -(A/2)[1 - m: - (6 - um)?] .  

Near the critical doping concentration a’e can assume that 4v., < M’, zFO. Then for 
U = Wthe expression (20) in conjunction with (12b)  yields 

(23) 
The square brackets io (22)  can be compensated by the denominator of renor- 

malization factor q. (equation (19))  in the same doping regime. Equation (18) then 
reduces to .. 

with fa = (fAofBO)’/* the numerator of qT From the minimization with respect to d i ,  



9848 

(as,/ad)l,=, = 0, it is not difficult to show that the dependence of E~ on m gives the 
following first correction: 

D Nguyen Manh et al 

6 ~ , -  (Sd)’ - m4. (24) 

xi’ = (1/P?J)(J2€*/am2)lm=u (25) 

Then the spin susceptibility xs, given by 

where flu is the Bohr magneton, is found from the first term of the RHS of (23) as 

(6 + 2d)m6 
(26) 

2d1/’(6 + d)’/’(l - 6 - 2d) -= + X. ( 1 - 6 - 2 d ) ’ - &  [(l - 6 - 2d)2 - mi]3/2 ’ 
The second term of (26) gives a new contribution to the spin susceptibility from the 

antiferromagneticstate with respect tothefirst one,whichcanbeobtainedintheoriginal 
CA when mu = 0 [18, 191. This contribution is always positive, so the value of 6 must 
be reduced in comparison with the paramagnetic state if antiferromagnetic correlations 
occur. 

3. Ground-state energy 

The minimization of (18) with respect to d may be performed numerically for the AF 
state for the half-filled case [ZO] and has been done recently for all doping concentrations 
[26]. But it is difficult to study other physical properties like spin susceptibility from 
these calculations. On the other hand, one notes that the antiferromagnetic state in HFA 
leads to energies that are in good agreement with the AFGA in the weak- and strong- 
coupling limits. This leads us to find the ground-state energy of ‘ferrimagnetic state’ by 
expanding eg in di - drF. So the change of this factor can be written as 

with 

(a2qo/adt ad, ) ld~)-d7A (28) 
By limiting the expansion up to second order in d, - drF, it is not difficult to find 

that 

E ~ =  - QU2(l/a + l/b) (29) 
where €7” is the total energy of system in the HFA. It can be written as 

(30) 
The expressions a and bin (29) are found to be 

The second term on the RHS of (29) is then always negative and gives a correction to 
the ground-state energy with respect to the HFA. If we denote 
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( I ,  = (nA f m A ) ( 2  - n A  f UmA) (324 

bo = (na + m B ) ( 2  - nB + mB) ( 3 w  

U-’ = - ( u t a ~ ) ’ / [ 1 6 ( ~ ~ ~ a 1  + ~ F f u , ) ]  ( 3 3 4  

b - ’ =  - (b tb j ) ’ / [16($;b j  + EFfbt)] .  (33b) 

then we obtain the simple expressions for a and b: 

When m = 0, we have the ground-state energy for the AF case: 
€AF = e, HF - (U2/641e,(6,mo)\){[(l + 6)’ - ma][(1 - 6)’ - m:]}’/(l  - 6* -ma). 

(34)  
The corresponding expressions for 4AF and dAF are 

qAF= 1 - (U2/641€~,(6,mo)\){[(1 + 6)’ - m:][( l  - ~ 3 ) ~  - m$]}2/(1 - 6’ - 4) 
(35) 

and 

dAF = dHF - (U/321eC(6,mo)l){[(l + 6)‘ - mZl[(I - 

with 

- m?,]}*/(l - 6’ - m i )  
(36) 

dHF = (n2 - m;)/4. 

The results (34)-(36) allow us to discuss various limits. First, we remark that in the 
weak-coupling limit U < W they give a useful correction in comparison with HFA. For 
the half-filled case, where 6 = 0, we have 

(37) € A F =  W - ET (v /64kC1)(1  - mal3. 
In the strong-interaction region, U+ 13, one finds 1 - m , - +  l / v a n d  I E ~  -+ t2/U.  So 

we have a correction to the ground-state energy of order 1 / @ +  0, which is in good 
agreement with recent numerical calculation [21] .  Finally, for ma = 0, from (34) we 
obtain 

Eg = €T”F - (U2/64Q0J)(1 - a y .  (38) 
When 6 = 0, we have = -/E,, I + U/4, so ground-state energy (38) gives exactly the 
Brinkman-Rice metal-insulator transition at U = U, = i.e. localization occurs at 
a finite interaction strength. 

In order to verify quantitatively, we compare our analytical results (34)-(36) with 
the numerical ones from AFGA [26]. The ground-state energies €,calculated in the AFGA, 
AFHFA, GA and paramagnetic Hartree-Fock approximation (PHFA) by both methods are 
shown in figure 1 ,  for various doping concentrations at U = 8t = W. We note that, in all 
the cases investigated, the analytical expressions (34)-(36) give a good approximation 
to the results of the numerical calculations. Figures 2 and 3 show the ground-state energy 
correction of GA in comparison with HFA as a function of sublattice magnetization for 
different doping. The quantity is always a decreasing function of the magnetization for 
all values of doping concentration. This result seems natural since in the presence of a 
magnetic moment the spin up and spin down tend to avoid each other and we can expect 
that the introduction of correlation has a smaller effect when the magnetic moment is 
increased. As a consequence, the energy of the paramagnetic phase is lowered more 
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Figure1.Theground-stateenergyasafunctionofthenumberofholespersitecalculsted by 
different approximations. The suffixes a and n mean analytical and numerical results, 
respectively. Energies are measured in units of the hopping matrix element. 
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Figure 2. The energy correction with respect to Hartree-Fock approximation as a function 
of the variational parameter A with different number of holes per site for U = 8r  
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Figure 3. The same functions as in figure 2 for U = 4f. 

than that of the antiferromagnetic phase when correlations are taken into account. An 
important conclusion is that the doping range for antiferromagnetism in this case is 
smaller compared to that of HFA. 

4. Properties of the solution 

Wenow want toshow that our Gutnviller'sresultsfortheground-stateenergy (equations 
(29)-(33)) can be used to extract two important physical quantities of the system: the 
longitudinal spin susceptibility and the charge compressibility in doped AF state. From 
delinitions we have the following two expressions, respectively: 
1/x: = (l/& (J2&E/am2)l,,0 = (1/d,)[2&k2,") - U/Z - (U2/4) (a2(a- ' ) /Jm2 ) I m = o ]  

and 
(39) 

l/k=(aZ&,/J62)~,=,,=Z&f.6) + U/2-(@/4) (J2(a-')/J@)1,=,c (40) 
where one denotes 6, as a critical concentration. The second derivative values in (39) 
and (40) are obtained from equations (17b) and (29) in conjunction with (13). They have 
the following forms: 

and 
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where A&(6) are the contributions of ‘correIation terms’ (third terms of equations (39) 
and (40) respectively) and &Pm(@) are the nth derivative of the kinetic energy with 
respect t o m  and 6 .  Their expressions are given in the appendix. The first two terms of 
(39) and (40) represent the Hartree-Fockcontributionsto Cy:)-L and (k ) - ’  respectively. 
They have opposite sign for the first quantity and the same sign (positive) for the second 
one. The numerical calculations for increased values of U (see section 5 )  show that this 
contribution decreases continuously to zero for Cy:)-’ whereas it increases greatly for 
(k ) - l ,  The third terms of these equations give the ‘correlation contributions’ and they 
always have a positive sign. For the large-U repime, the latter contribution becomes an 
important correction with respect to the Hartree-Fock one. This will decrease the 
stability domain of ferrimagnetism as compared to the phase diagram obtained by Penn 
in W A  [23]. 

D Nguyen Manh et al 

5. Landau parameters 

In this section we want to apply the Fermi liquid theory to the doped antiferromagnetic 
system where the properties with average spin fluctuations can be evaluated from 
preceding calculations. This has been done by Vollhardt [I51 for liquid 3He considered 
as a nearly localized Fermi liquid and by Valls and Tesanovic [27] for heavy fermions. 
Contrary to these authors, we show that if superconductivity can occur, it is likely to be 
singlet. The presence of antiferromagnetic correlations seems to be responsible for this 
difference. It is well known that by introducing the concept of quasi-particles the Landau 
theory of a Fermi liquid gives the possibility to understand the physical properties of the 
system. Here the quasi-particles are characterized by an effective mass m* and an 
effective interaction. The latter can be parametrized by means of an infinite set of 
‘molecular fields’ quantified by the Landau parameters F?@) [B]. For example. the spin 
susceptibility xs, the compressibility k and the effective mass m* can be related to the 
first usual Landau parameters F ; ,  F; ,  F ;  by the following equations: 

F ;  = -1 + m*k@)/mk 

m*/m = 1 + F; /3 .  

(43) 
= -1 + m*X(0)/mXs (44) 

(45) 
It is obvious that the ‘Fermi liquid’ term (i.e. the molecular fields) will in general 

affect the response to external fields. So if we want to apply the expressions (43)-(45) 
to the system with antiferromagnetic correlation, it is necessary to clarify the value xs 
in equation (44). Since in the AF phase the ground state defined by spin-density 
wavefunction breaks the continuous spin rotation invariance, we have in general 
xk # xf , where L and T denote the longitudinal and transverse components. So we want 
to evaluate the relation 

~ L T  = xfhk (46) 
in the proximity of the critical dopingconcentration 6,. For a general AFciAwavefunction, 
one can extract this relation from the nearest-neighbour spin-spin correlation functions 
[25]. The latter may be calculated exactly only for the limit d+ m where one reproduces 
the results of the Kotliar-Ruckenstein path integral approach to the Hubbard model in 
finite dimension. Their results can be written as 

(.S:S:+r) = -na/4 + g,&”’(g = 1) (47) 

(s:s,,) =g,+$-cS+s-(g = 1) (48) 
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where g,,, (g.+.-) and Cszs'(g = 1) (C""(g = 1)) are the longitudinal (transverse) of 
renormalization factor for the spin-spin correlation function (SSCF) and the SSCF values 
calculated from non-correlated spin-density wavefunction, respectively. Note that, 
owing to the broken symmetry, we have in general gsts- # g& 
g s y  = 4[(n - 2d - ma)' - (1 - n)'ma]/(nz - ma)[(Z - n)' - ma] 

gs+s- = 4[(n - 2d)' - ma]/(n2 - ma)[(2 - n)Z - ma]. 

g,zsz = gg+s- = 4(n - 2d)2/nz(2 - n)* .  

(49) 

(50) 

(51) 

and 

In the paramagnetic case, m, = 0, we have 

Expressions (50) and (51) can be deduced from the simple matrix-density rep- 
resentation for Gutzwiller approximation [17].  Unfortunately, this is not the case for 
(49) because this method assumes that the correlation between the sites is neglected. 
The presence of the factor 4 in equations (49)-(51) can be explained by the fact that the 
probability for the spin-spin interaction process occurs only when both sites are singly 
occupied. We have used (47) and (48) to evaluate the value rLF Instead of Cszs'(g = 1) 
we calculate the longitudinal and transverse spin susceptibility in HFA from the linear 
response of an AF to an external magnetic field 1221. It is not difficult to show that 

xFFk = 1) = - 2 ~ :  lim r (q)/q-o (52) 
with 

wheref(e) is the Fermi distribution function and Ek,o is the AF eigenstate in HFA. The 
expressions (52)-(55) in conjunction with (47) and (48) allow us to calculate rLT, which 
in turn is used to estimate the average susceptibility of the system: 

, f=kk(l  + 2rLT). (56) 
We use equation (56) to estimate the Landau parameter F; with the value of xk 

determined from the ground-state energy calculation (see equation (39)). The cal- 
culations are carried out by using the exact square lattice DOS pa(&). Two other Landau 
parameters Fd and Ff can be obtained from equations (40) and (35), respectively. The 
latter quantity ( q M )  can be identified as the discontinuity of the momentumdistribution 
at the Fermi surface and determines the mass renormalization, i.e. 

qM = (m*/m)-' .  (57) 

A;(%) = F;(*)/{ l  + [F;@) / (2 /  + l)]) (58) 

If we define 

which determines the spin singlet (triplet) quasi-particle scattering amplitude in the 
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Table 1. Physical properties and Landau parameters calculated in the doped anti- 
ferromagnetic state for difierent valuesof U. 

6l 81 41 U 

0.125 0.125 
0.049 0.073 
0.117 0.080 
0.908 0.794 
1.692 2.099 
1.695 2.109 
1.011 1.033 
0.312 0.361 
0.141 0.116 

-0.253 -0.274 
0.665 1.309 

0.033 -0.333 
0.010 0.031 

0.304 0.777 

0.140 
0.167 
0.042 
0.656 
2.472 
2.538 
1.109 
0.449 
0.096 

-0.351 
2.248 
1.573 

-0.565 
0.025 

particle-hole channels T5(')(0, p = 0), we can study the existence of superconductivity 
from the Fermi liquid theory [29]. It has been observed by Patton and Zaringhalam [30] 
that if the scattering amplitude is chosen to contain only I = 0 and I = 1 partial waves in 
the scattering angle q (s-p approximation), then the effective interaction gi(j = 0, 1) 
can be derived from the spin singlet and triplet amplitudes T J 0 ,  p) in the particle- 
particlechannels. They have the followingexpressions in termofthe Landauparameters: 

g, = E (-I)l(A? - 3A7)/4 
I 

and 

gl = E (-l)I(A? + Ar)/12. 
I 

(59) 

Ifg,isnegative, thej  = O(1) indicatespairinginasinglet (trip1et)state. Here weassume 
that A;(a) = 0 for I 3  2 and use the sum rule &(A; + A f )  = 0 to estimate the value of 
A?. The results of our calculation are presented in table 1 for three different values of 
U (U = 4t, 6t, SI). Numerical error for the estimated values in this table is The 
following points can be deduced from this table: 

(i) The magnitude of the renormalization factor is generally reduced in the U 5 W 
regime for doped AF phase. This tendency, which is in agreement with those of the half- 
filled case [21], leads to an increase in the Landau parameter 6 for effective-mass 
relation. 

(ii) Thecontributionof'correlationter"(third termofequation (39)) formagnitude 
of &!)-I with respect to Hartree-Fock terms becomes dominating when U+ W (first 
two terms have opposite sign). 

(iii) In doped antiferromagnetic regime, the ratio rLT increases with U ,  so the trans- 
verse magnetization fluctuations may be important in the large-U limit [lo]. However, 
for moderate magnitude of U ,  the value of rLTis not very different from 1. This property 
concerns not only ,yT/x,' but also the relation between their renormalization factors 
gsir-/gsZ+ So the Landau parameter I$ is then determined principally by the value of 
xk. The magnitude of I$ is greatly reduced in comparison with those for liquid 'He 
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where 6 - -0.75. From our calculations this reduction corresponds not only to increas- 
ing effective masses but also to a new contribution in the spin susceptibility relation 
xo/x,  from antiferromagnetic state in the proximity of the critical concentration, as 
has been explained in the case of expression (26). We have mentioned that this is a 
fundamental property of the system when antiferromagnetic correlations occur. 

(iv) The ‘correlation term’ of inverse compressibility (k-’) (equation (40)) also 
increases with U but there is no compensation between the first two terms of this 
equation. So the Landau parameter Po is very large. The same conclusion is obtained 
by Kotliar ef a1 [31] in their Fermi liquid description of La2->r,Cu04. 

(v) Finally, from our calculation we came to a very interesting conclusion with 
respect to superconducting propertiesof the system. Singlet superconductivity canoccur 
in the antiferromagnetic doped phase. But this effect appears only for U > 4t when 
the antiferromagnetic correlations become important. Our conclusion seems to be in 
agreement with the dependence of the attractive interaction as a function of Uobtained 
by Weng et a1 [SI from a variational approach for the ‘spin bag’ model. Recently Monte- 
Carlo simulations [32] have been performed in the two-dimensional Hubbard model to 
study a quasi-particle attraction. Here the authors did not find evidence for long-range 
pairing correlation in a very small sample (4 x 4 and 6 X 6 for U / t  = 4 and 4 X 4 for 
U / f  = 10). We do not consider that these calculations can really prove that the ground 
state of the Hubbard model cannot be superconducting, especially for U - W. 

6. Conclusions 

In the present paper we have studied the propertiesofzo antiferromagneticdopedphase 
in the Hubbard model. The Gutzwiller approximation for this case is reformulated in 
order to obtain useful expressions for the ground-state energy. The latter, in fact, is 
the energy of the ‘ferrimagnetic correlated state’. We have derived analytically the 
minimized expressions (with respect to d )  for this state, which allow us to study some 
essential properties of the longitudinal magnetization fluctuations. We have found that 
the longitudinal and transverse spin susceptibilities have comparable magnitude at or 
near the critical concentration for moderate regime of U. 

The Landau parameter estimated for this system with non-long-range AF order has 
three principal properties: 

(i) In the intermediate range for U ( U S  W )  the bandwidth renormalization factor 
q increases with U.  

(ii) The reduced value of Landau parameter FA with respect to the paramagnetic 
Fermi liquid case shows the important effect of the presence of antiferromagnetic 
fluctuations. 

(iii) There is a very large value of Ft. 
All these properties lead to a possible existence of singlet superconductivity in the 

system for U > 4t. The natural way to extend our results is to study the behaviour of 
Landau parameters in a more realistic model for a high-T, superconductor, for example, 
the two-band model [33]. In this model, one can predict strong two-dimensional anti- 
ferromagnetic fluctuations for doping much above the critical doping obtained from the 
single Hubbard model [34]. This fact confirms that superconductivity can exist in the 
presence of relatively strong antiferromagnetic correlations. 
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Appendix 

The following expressions for Aiz1*) are obtained: 

D Nguyen Manh et ai 

A t  = -[4mg(l + a2 - mg)' - (ai  a l )o( l  + 6' - 3m;)]/2&(P)(a t a 
A i  =4m;(aTa,) ,( l  + a 2  -m;)($."'S+ c io ) ) / [& i0 ) (n~  t a i ) #  

~ i ~ . ~ ) ( l  - 62 - 2e$O) - 4cL1.")6 ma) A; = 

(Al) 
(A21 

- 
8 [&!''(a t + a 1 )012 

and 

AA = 26(1 - 6' t m!)(a, a ~ ) ~ [ 2 c $ ' ) 6  - (1 - 6' - m : ) ~ ~ ~ . ~ ' ] / [ ~ ~ ~ ) ( a  

A a = L (  (a a , ) ;  ci2J'(1 - 6' - mi) - ~ E $ O )  - 46 E ,  (I ' 

A! = -[46'(1 - Sz + ~ 8 ) ~  - (a I a i  )o(l - 36' + m$,)]/2&i0)(a t a )o  (A4) 

('45) 
+ a 

~ 

8 [daYa I + a I )012 

4[.@)6 - (1 - 62 - mz (1 6) 

[@(at + a 1 )013 a ) E c '  I )  (A@ - 

where(a ,n~) ,and(aT +ai)oaretheirvaluesatm=OandS= 6,. 
Thenthderivativesof the kineticenergy E ~ ~ " ' ( ~ ) )  with respect tom (6) have theforms 

(AlOa) 
(AlOb) 

(Alla) 
(Allb) 
(Allc) 
(Alld) 
(Alle) 
( A W  
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(A12c) 

The value of parameter AQ in expressions (A7)-(A12) can be determined from 
minimization of ground-state energy with respect to mg. When AQ = 0, it is evident that 
the second derivative of E, yields the spin susceptibility and the charge compressibility 
in PHFA. 
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